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Abstract—This work deals with the influence of geometry on the equivalent transverse shear stiffness
of honeycomb sandwich plates. First, it presents the analytical solution for a two-dimensional basic
cell of honeycomb structures by the two scale method of homogenization for periodic media. This
solution gives the first order equivalent transverse shear modulus of honeycomb structures. Then
the equivalent transverse shear stiffness of a regular honeycomb core is evaluated by the finite
element method using a three-dimensional basic cell and the analytical solution for honeycomb
structures. The equivalent transverse shear stiffness of a honeycomb core, in general, depends on
the geometry of the sandwich plate. However, when the core depth is large compared to the
hexagonal size, the aspect ratio of face panel thickness to hexagon wall thickness has little influence,
and the transverse shear stiffness approaches the solution of honeycomb cellular structures. Based
on the numerical study, an improved lower limit for the equivalent transverse shear stiffness of
honeycomb cores is proposed, and an improved local shear stress of honeycombs is presented.

1. INTRODUCTION

Sandwich plates are efficient structures widely used in various engineering applications.
One of the most common core materials for sandwich plates are honeycomb cellular
structures built from isotropic metal foils. For a sandwich plate subjected to lateral loading,
its honeycomb core must be stiff enough to prevent one face panel of the sandwich plate
from sliding over the other. Such rigidities are called the transverse shear stiffness of the
honeycomb core. When the core depth is much larger than the thickness of the face panels
(most sandwich plates belong to this category), the transverse shear stiffness of the sandwich
plate is contributed almost entirely by its core. For simplicity and efficiency, the cellular
honeycomb core is idealized as a homogeneous material and its equivalent mechanical
properties are used in analysis and design. Therefore, the knowledge of the equivalent
transverse shear stiffness of honeycombs is very important for the analysis and design of
sandwich plates.

In the past three decades, many researchers have studied the equivalent shear stiffness
of honeycomb cores experimentally (e.g. references given by Allen, 1969; Adams and
Maheri, 1993) and theoretically (Kelsey et al., 1958 among others). However, the analytical
solutions proposed so far do not agree well with the experimental resuits. All existing
analytical solutions were obtained from some conventional approaches of stress analysis in
conjunction with a simple averaging process. The conventional approaches are not rigorous
enough to accurately homogenize honeycombs. The recently developed homogenization
theory of periodic media (Bensoussan et al., 1978) provides a rigorous and rational means
for homogenizing periodic structures (Tong and Mei, 1992). A honeycomb sandwich plate
is a structure built from a large number of periodic or nearly periodic substructures.
Therefore, the homogenization theory can be used to homogenize honeycomb sandwich
plates.

A honeycomb core is a periodic structure with two spatial scales: the scale of the
hexagonal cell and the scale of the honeycomb itself. A sandwich plate with a honeycomb
core is also a periodic structure with the same two spatial scales. However, when a honey-
comb cellular structure is used as the core, it behaves differently from the pure honeycomb
structure because the honeycomb core has a limited depth and the two face panels are
bonded at the top and bottom of the core. Accordingly, the equivalent transverse shear

1383



1384 Guangyu Shi and Pin Tong

.

—— X

Fig. 1. The geometry of a typical honeycomb cellular structure.

stiffness of a honeycomb sandwich plate depends on the geometry of the sandwich plate.
In a recent paper, Grediac (1993) attempted to numerically evaluate the influence of
honeycomb depth on its equivalent transverse shear stiffness. However, he only considered
stiff face panels and his approach was the unit displacement method.

The objective of this work is to study the influence of geometry on the equivalent
transverse shear stiffness of honeycomb sandwich plates. To this end, the analytical solution
for the equivalent transverse shear modulus of honeycomb cellular structures is presented
first. A two-dimensional (2-D) basic cell is used for honeycomb structures. The analytical
solution is derived by the two scale method of the homogenization theory for periodic
media. Although a sandwich plate is periodic only in the plane of the plate, the *“micro-
strains” also vary along the normal direction of the plate. Therefore, a 3-D basic cell is
needed to account for the variation of micro-strains on the normal direction. The quadri-
lateral strain plate element (Shi and Voyiadjis, 1991) is used to analyse the 3-D basic cell.
According to the numerical results for honeycomb cores with various geometric aspect
ratios, an improved lower limit for the transverse shear stiffness of sandwich plates is
proposed. The present improved lower limit agrees well with the experimental results
reported by other researchers (Kelsey et al., 1958). Therefore, it can be used as the solution
for the analysis and design of honeycomb sandwich plates.

2. TRANSVERSE SHEAR MODULI OF HONEYCOMB CELLULAR STRUCTURES

A honeycomb cellular structure is built from a large number of periodic or nearly
periodic substructures. Such a substructure is called a basic cell in this study. Figure 1
schematically shows the geometry of a typical honeycomb structure. In the homogenization
theory of periodic media, the equivalent material properties of a periodic structure can be
evaluated by homogenizing its basic cell. The basic cell chosen here is also depicted in Fig.
1 where € signifies the area of the basic cell enclosed by the dashed line.

As an inhomogeneous material, a honeycomb structure has two spatial scales, i.e. the
size of a typical hexagonal cell, named the scale /, and the dimension of the honeycomb,
the scale /. The ratio of //I' is in the order of ¢ which is small compared to one. Usually,
the thickness of a honeycomb segment is much smaller than the dimension of the basic cell,
1e. 1/l « 1 and t,/l « 1. If one lets x denote the local spatial vector of the basic cell and x’
denote the global spatial vector of the honeycomb structure, then x” and x have the
following relation:

X = gX. (1)
Corresponding to the two spatial scales, the strains and stresses in a honeycomb

structure can also be divided into two scales. Let e°(x’) denote the strain tensor in the /'
scale and e!(x, x’) be the first order strain tensor in the / scale in the basic cell ; then the
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Fig. 2. 2-D basic cell of honeycomb structures.

perturbation method leads to the equilibrium equations in the basic cell (Tong and Mei,
1992 ; Shi and Tong, 1994a)

Vio=V-A:(e4e)=0 inQ, )
A:(e’"+e') n=0 ondQ, (3)

together with the periodic conditions of the basic cell, which are the important constraints
resulting from the homogenization theory of periodic media. In the equations above, A is
the elasticity coefficient tensor ; €, denotes the domain occupied by the honeycomb segments
of the basic cell in the x—y plane ; 0Q, represents the boundaries of Q;; n is the direction
cosine vector of 2Qy, ; the symbol : signifies the tensor contraction operator ; and the stress—
strain relation

a(x,x) = A:[e"(x') +e' (x,x)] “4)

is utilized. The / scale strains e' appearing in eqns (2) and (3), which can be considered as
the “micro-strains” of the basic cell, can be solved as a boundary value problem subjected
to initial strains e° and the periodic conditions of the homogenization equations.

A honeycomb structure is periodic in the x—y plane only. The 2-D model shown in
Fig. 2 implies that all variables are independent of the z-axis. In order to derive an analytical
solution, only the honeycombs made of isotropic materials are considered in the present
work.

For the basic cell of a honeycomb cellular structure, it is convenient to evaluate the
strains in the local coordinates of the segments. Because of the assumption of isotropic
materials, only transverse shear strains in each segment need to be evaluated. Corresponding
to uniform global transverse shear strains e?, and eJ,, the initial shear strains of segment i
in its local coordinates take the form

€0y = el cosa, e, sina, (5)

ed, = —ed sina,+el, cosa, 6)
where ¢&; and y; are, respectively, the tangential and normal coordinates of segment i as
illustrated in Fig. 2; #, signifies the angle measured from the x-axis of the basic cell to ¢,

Substitution of eqn (6) into the traction free condition given in eqn (3) leads to
el = —ed, = el sinx,—e’, coso,. (7

The displacement resulting from a constant e}, is independent of ¢,. Consequently, the local
strain component given in eqn (7) satisfies the displacement periodicity.
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The linear strain—displacement relation is of the form

2! ouV  owD  owlV
e Ei _ — =

S N T ®)

in which w{"(&) is the warping of segment i in the / scale along the segment axis. Since
wil (&) affects the displacement periodicity in Q, el;; will be computed from the assumed
displacement w{" (&).

For a given constant initial strain field, eqn (2) indicates that a constant local strain
field can satisfy the equilibrium equation. Therefore, it is feasible to assume the warping of
segment { in its local coordinates w!" in the form

wi) = s&+¢; (i=1,2,3,4,5;n0summationin ). 9)

To prevent the rigid body motion, the center of the basic cell is assumed to be supported,
that is

w’(0) = ¢, =0. (10)

By using the periodic conditions of the basic cell
wille = wil |, wi{g = wi g (11)
6.152|C = ez]C4IE’ez]§3|B = 32155|F (12)

and the displacement continuity as well as the equilibrium conditions at points A and B,
one can obtain (Shi and Tong, 1994a)

1

8 =m(2t2 Conot——tl)Zefx (13)
a
522532542-95:_351 (14)
a
cz=c3=§s1,c4=05=0. (15)

Equation (13) indicates that the local warping is independent of e?,. This is because the
geometry and the material of the basic cell under consideration are symmetric about the x-
axis. Equations (9) and (13)—(15) show that the local warping of the basic cell is symmetric
about the x-axis and anti-symmetric about the y-axis. It should be pointed out that the
warping of the basic cell as a whole given in this work is rigorously derived from the
homogenization theory and valid for honeycombs with general configuration, while the
one given by Grediac (1993), called rotation there, is only valid for the honeycomb with
equal length, i.e. a = b.
It follows from eqgns (8) and (9) that

2els = .. (16)

Using the strain transformation, one can write the strains of segment i in the basic cell’s
coordinates as
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(el,); = ez Cos o+ ey, sin (17)

(el), = —el;sina,+el, cosa (18)
where o;; denotes the angle from the &-axis of segment / to the x-axis of the basic cell. The
theory of homogenization for periodic media gives the average transverse shear stress over
the basic cell {a,,> as

1 1
<O-:x> = _f O 2x dx dy = \'[ G 2[8.?)( + ezlx (X, y)] dx dy
Q @, Q @

G 5
= 6 i;] t,~l,-2[effx + 6’;5,' COS oy + e;m. sin ag’i]

G . 21, coso—1t
=5 lat, +2bt,(1 —sin” ) + m(atl —2bt, cos a)]2e?, (19)

in which G is the shear modulus of the isotropic honeycomb ; ¢; and /; are, respectively, the
thickness and the length of segment i ; and eqns (4), (7), (13) and (16) are used. If one lets
G, be the equivalent transverse shear modulus in the x-direction of the basic cell, then the
average stress can be expressed in terms of the strain in the /" scale as

(o) =G 26, (20)

Consequently, it follows from eqns (19) and (20) that the equivalent transverse shear
modulus of honeycombs is of the form

G 2t,cos0—1¢
== —sin? 2T “Ucat, —2bt, cOS 1
G, Q[a11+2bt2(l sin® o) + 4 2talb (at, —2bit, cos x)]. (21
Similarly, one can obtain
G 2
G, = §2bt2(1 —cos” a). (22)

In eqn (21), the last term is the portion resulting from the warping of the basic cell w{" (&),
while G,, is independent of this warping since both the basic cell and its warping are
symmetric about the x-axis.

The regular honeycomb in which a = b, t;, = 2¢, = 2t and x = 60° is the most common
shape for honeycomb structures in various engineering applications. Consequently, its
equivalent transverse shear modulus has been studied by many researchers. Substituting
the geometric parameters into eqns (21) and (22), one obtains

5 1\t 31t

G., = <3—6)8G=5 79 (23)
6. =1G (24)
zy’"d

where Q = %ad is used and d = \/Ea is the diameter of the inscribed circle of a regular
hexagon. In eqn (23), [~é(t/d) G is the contribution of the basic cell’s warping. In the last
three decades, the paper written by Kelsey et al. (1958) is the principal work on the
equivalent transverse shear stiffness of honeycombs. It is based on the conventional
approaches of structural analysis. Kelsey ez al. (1958) gave the lower limit by the unit force
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Fig. 3. 3-D basic cell of honeycomb cores.

method and obtained the upper limit from the unit displacement method. For regular
honeycombs with equal walls, the lower and the upper limits of G,, are identical and yield
the same value as eqn (24). The lower limit of G, given by Kelsey ez al. (1958) is the same
as that in eqn (23). The upper limit of G_, is

G. (25)

W W

t
(sz)upper = ;1
It can be seen from eqn (23) that this upper limit corresponds to the result obtained in the
present study where the warping of the basic cell as a whole is neglected. Therefore, the
present study can illustrate the lower and upper limits given by Kelsey et al. (1958).

3. THE INFLUENCE OF HONEYCOMB DEPTH ON ITS TRANSVERSE SHEAR MODULUS

The 2-D model considered above implies that the depth of the honeycomb is much
larger than the dimension of the basic cell, i.e. //H « 1, where H signifies the honeycomb
depth. When H is in the same order as /, it is obvious that the linear local warping along a
segment used in the 2-D model might not be feasible and the local warping could also vary
in the normal direction of the basic cell. Consequently, the contribution of the local warping
to G, in this case will be different from the last term in eqn (21) given by the 2-D model.
In order to take into account the variation of ¢, in the z-direction, a 3-D model must be
employed. The 3-D basic cell used in this study is illustrated in Fig. 3. Because of the
complexity in the computation of 3-D models, the 3-D basic cell will be studied by the finite
element method.

Since G., is independent of local warping, G., given by a 3-D model will be the same
as that obtained from the 2-D basic cell. Therefore, only G, needs to be evaluated from
the 3-D model. The regular hexagonal cell with 7, = 2z, = 21 is the most widely used shape
for honeycomb cores. The present numerical study of the honeycomb depth’s influence on
its shear modulus is confined to the regular honeycombs. For the 3-D basic cell shown in
Fig. 3, the average transverse shear stress is defined as

G H
<62x> = Q—IIJ\ J 2[ezox + e:]x(xa ¥, Z)] dx dy dz = sz 232‘( (26)
Q, Jo

where the transverse shear strain e/, in each plate of the basic cell can be calculated from
el:; which takes the form
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Table 1. The influence of honeycomb depth on deflection and shear modulus

Hia ) 2 4 6 8 10
W/ Wy 1.537 1.307 1.227 1.177 1.145 1.125
B —0.112 —0.111 —0.111 —0.111 —0.110 —0.110
oul  ow"
2ely = ——+ ——. 27
=i Oz af, )

It should be noticed that the first term in the right hand side of the above equation is not
equal to zero in a 3-D model.

The contribution of the local warping given by the 2-D model to G., is the second term
in eqn (23). Let § denote the non-dimensional contribution of the local warping in a 3-D
basic cell, then the general form of G, for regular honeycombs can be written as

5 t

where f is of the form

B= ‘i 1 jHJ (elg/e2,) cos g dE; dz. (29)

3toa H,-Z 0

The modifying parameter f is a function of the ratio H/a. The task in this section is to
investigate the relation between f and H/a.

The honeycomb structure considered in this study is built from thin foils with a/t = 72.
The basic cell shown in Fig. 3 is modeled by the four-noded strain plate element developed
by Shi and Voyiadjis (1991). A 6 x 8 mesh is used for plate DAA’D’ and a 3 x 8 mesh for
each of other plates when H/a < 6, and 4 x 8 for DAA’D’ 3 x 8 for each of other plates
when H/a > 8. This mesh is fine enough since the mesh of 4 x 6 for DAA'D” and 2 x 6 for
others yields the same result. Because the displacement is nonsymmetric about the y-axis,
as indicated by eqns (9) and (14), it cannot only take one quarter of the basic cell to
compute its stress state even though the geometry of the basic cell is symmetric about both
the x- and the y-axes. In order to enforce the periodic conditions, the whole basic cell is
considered in the present numerical analysis.

For given global strains e?, and €J,, the corresponding initial strains of each plate in its
local coordinates can be calculated from eqns (5) and (6). Accordingly, the equivalent loads
acting on the basic cell can also be expressed in terms of these global strains and the basic
cell’s geometry. The periodic conditions require that displacements and stresses along BB’
equal to those along FF” and all quantities on CC’ equal to those on EE’.

The numerical analysis of the 3-D model shows that du!"/0z is not equal to zero as
given by the 2-D model, and it has a considerable contribution to . Table 1 tabulates the
finite element solutions of 8 versus H/a. The ratios of w/w, are also given in the table, where
w and W, are the maximum deflections of the local warping obtained from the 3-D and
2-D models, respectively. The maximum deflections occur at the two joints of the basic
cell. Equations (9) and (13) give

I—cosaa
Py, = —————— — b 30
Wo 1+a/b 2(ze,x) ( )

in which ¢, = 2¢, is used. This table indicates that when H is close to a, the real warping of
the honeycomb is much larger than that predicted by the 2-D basic cell, but as H/a increases,
w decreases quite fast and approaches a value close to w,. However, § given by the 3-D
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model is quite stable and different from the value obtained from the 2-D model. This is
because in the 2-D model the variation of e!, on the z-axis is neglected and a linear function
is assumed for w'. Nevertheless, the 2-D model not only enables one to obtain an analytical
solution, but also yields a good approximation of both w"” and G.,. When H/a is large
enough, it follows from eqn (28) that the 3-D model gives the equivalent transverse shear
modulus of regular honeycomb structures as

5 t t
= — — - == _ . 1
G., <3 0.11>dG 1.56dG (31)

4. INFLUENCE OF GEOMETRY OF SANDWICH PLATES ON G,

In eqn (28), B results from the local warping of honeycomb cellular structures. When
a honeycomb is used as the core material of a sandwich plate, the honeycomb cannot warp
freely as in the case of honeycomb cellular structures, since the warping is constrained by
the bending rigidity of the sandwich’s face panels. Consequently, the transverse shear
stiffness of honeycomb sandwich plates could be different from that of a honeycomb cellular
structure. This is also true when the transverse shear stiffness of the face panels is negligible.

A sandwich plate with a honeycomb core is also a periodic structure with two spatial
scales. However, in this case the basic cell must include the face panels to account for the
effect of sandwich face panels on G.,. The computational model used in this study is the
3-D hexagon cell depicted in Fig. 3 together with two diamond plates bonded on the top
and bottom of the cell. It is assumed that the bonding between the honeycomb core and
the face panels is perfect. If the face panels are to be treated as 2-D plates rather than a
3-D solid, the thickness of the face panels 4 must be much smaller than the depth of the
sandwich core, i.e. h/H « 1. Fortunately, this is the case for the sandwich plates used in
various engineering applications.

The local bending rigidity of a sandwich face panel made of isotropic material D; is of
the form

EnW’

- B 2
12(1 —v?) (32

i

in which £;and v, are, respectively, the Young’s modulus and Poisson’s ratio of the sandwich
face panels. The stiffness ratio of honeycomb core to face panel is defined by a non-
dimensional parameter

E-t-a H
Y= 12D, (33)
where E is the Young’s modulus of the honeycomb core. A strong face panel leads to a
small y and vice versa.

The 3-D basic cell for honeycomb sandwich plates is also studied by the finite element
method. The mesh layout for the face panels is depicted in Fig. 4. The mesh used in the
analysis of honeycomb structures is employed again for the honeycomb core portion of the
basic cell. The finite element for the face panels is also the quadrilateral strain element (Shi
and Voyiadjis, 1991) which can automatically reduce to the corresponding triangular
element. The periodic conditions should be applied to both the honeycomb core and the
face panels. The equivalent loads in this case can also be written in terms of ¢, and e?,.

For a fixed A/t = 10, the finite element solutions for w;/w, and § versus H/a are listed
in Table 2. It should be noticed that in this case the deflection w across the core depth is
not constant; w; 1s the maximum deflection of the face panel. Similar to the honeycomb
structures presented in the previous section, du!"/0z also has a considerable contribution
to . Because of the assumption of thin face panels, the transverse shear strains in the face
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Fig. 4. Mesh layout for the face panels in the basic cell of sandwich plates.

Table 2. The effect of honeycomb depth on G., of sandwich plates (A/t = 10)

Hja 1 2 3 4 6 8 10
7 241 4.82 7.23 9.64 14.47 19.27 24.10
W Wy 0.298 0.342 0.347 0.350 0.355 0.358 0.360

i —~0.0555  —0.0793  —0.0896  —0.0948 —0.100 —0.103 —0.104

Table 3. The influence of bending rigidity of sandwich faces on G., (H/a = 6)

hit 0 2.5 5 10 15 20 40

y o] 926.08 115.76 14.47 4.29 1.81 0.226
Wi/ Wy 1.177 1.057 0.836 0.355 0.140 0.0643 0.0085
W,/ Wo 1.177 1.140 1.179 1.224 1.239 1.243 1.246

B —-0.111 —0.111 —0.108 —0.100 —0.0965 —0.0953 —0.0945

panels are neglected. Table 2 indicates that the warping of the outer surfaces of a honeycomb
sandwich plate is indeed much smaller than that of the honeycomb structure, and f for
sandwich plates, in general, depends on the aspect ratio of H/a. However, when H/a > 6,
both w;/#w, and f remain basically unchanged and converge to some constants. Therefore,
H/a = 6 can be taken as the limit case. w/w,, w./W, and B versus A/t for a fixed H/a = 6 are
given in Table 3 in which H/A = 10 in all cases. As mentioned earlier, the deflection is
varying across the core depth. The contour of the deflection across D'D (see Fig. 3), for
the case of 4/r = 40, is depicted in Fig. 5, which is obtained by a constant in-plane strain
element. In this table w, is the maximum deflection inside of the honeycomb core, and
h/t = 0 represents the cellular structure of honeycomb. The location of w, is mesh depen-
dent. However, this is insignificant since the face panels only have a local effect on the

z

H

;)
0 1

w/w,
Fig. 5. The deflection across the core depth D'D.
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honeycomb’s warping as will be shown below. Figure 5 and Table 3 clearly illustrate that
the warping in the interior of the sandwich core does not change much from that of
honeycomb cellular structures and the modifying parameter of shear modulus § hardly
changes from the value of the honeycomb either, even though the core is constrained by
face panels and the warping of the sandwich plate is vanishing as the stiffness ratio y
decreases. This indicates that the influence of face panels on the honeycomb’s warping is
quite localized.

Tables 2 and 3 show that all § are larger than or equal to —0.111 which is the value
of honeycomb cellular structures given by the 3-D basic cell. Therefore, the equivalent
transverse shear modulus of honeycomb structures given in eqn (31) is an improved lower
limit for G., of sandwich plates with regular honeycomb cores. That is

4
(G:x)lnwer = 156;2G (34)

When the ratio of the honeycomb depth to the hexagon length of honeycomb core, H/a, is
larger than 6, this lower limit is very close to the real value. The experimental results given
by Kelsey er al. (1958) show that the longitudinal equivalent transverse shear stiffness of
honeycomb sandwich plates really falls in the range bounded by %(t/d)G and g(t/d)G. On
the other hand, the present solution of static moduli is larger than the experimental dynamic
moduli given by Adams and Maheri (1993).

By setting the deflection of the top line of the basic cell equal to zero, Grediac (1993)
implies that the face panels are extremely stiff, which corresponds to y = 0 in the present
notation. For the regular honeycomb considered here, Grediac’s result converges to the
lower limit given by Kelsey ez al. (1958), which is identical to eqn (23), as H/a increases.
However, Table 3 indicates that even in this special case the present solution is different
from that obtained by Grediac. This can be attributed to the fact that Grediac only used
one quarter of the basic cell for the nonsymmetric warping of the honeycomb core. The
nonsymmetric displacement in the z-direction given by the present work is depicted in Fig.
5.

Even though the 3-D numerical solution for the equivalent transverse shear stiffness
given in eqn (34) does not change much from the 2-D analytical solution in eqn (23), the
local stress obtained from a 3-D model! is significantly different from that of a 2-D model.
It follows from eqns (4), (5) and (27) that the local shear stress in panel i takes the form

(35

ou"  owV
0z o0& |

6..=G [2(92\. cos;+elsiny) + —— +

In the 2-D mode! (6u!"/éz) = 0, while in the 3-D model (¢u!"/éz), which is dependent on
the geometry of sandwich plates, is not equal to zero but in the same order as (¢w!"/0¢)).
This local stress given by the 3-D model is very important for the local behavior of
honeycombs, such as the local buckling of honeycombs under transverse shear forces (Shi
and Tong, 1994b)

5. SUMMARY AND CONCLUSIONS

In this work, the sandwich plate with honeycomb cores is treated as a periodic structure
with two spatial scales. By using the two scale method of homogenization for periodic
media, this paper evaluates the equivalent transverse shear stiffness of regular honeycomb
cores. A 2-D basic cell is chosen to derive the analytical solution of honeycomb cellular
structures, which provides a reference for the study of honeycomb sandwich plates. A 3-D
basic cell comprised of a 3-D hexagon cell and face panels is used to model transverse shear
behavior of sandwich plates. The 3-D basic cell is studied by the finite element method. The
various numerical results presented here indicate the following.
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(1) Although a honeycomb cellular structure is periodic only in one plane, the strains in
the / scale also vary in the normal direction of the plane. Therefore, a 3-D model is
needed to accurately evaluate the equivalent transverse properties of honeycombs.

(2) For honeycomb cellular structures, the warping in the / scale is a function of H/a, the
ratio of honeycomb depth to hexagon dimension. Nevertheless, the equivalent trans-
verse shear moduli are almost independent of H/a.

(3) The face panels on a honeycomb core indeed constrain the warping of the outer surfaces
of the core. But, the influence of face panels on the honeycomb’s warping is quite
localized.

(4) In general, the longitudinal shear stiffness G, of honeycomb cores depends on the
geometry of the hexagon and face panels of sandwich plates. However, when H/a > 6,
G.. is quite close to a constant which equals the corresponding modulus of honeycomb
cellular structures. Consequently, the equivalent transverse shear modulus of honey-
combs given in eqn (31) can be chosen as the improved lower limit for the equivalent
transverse shear stiffness G, of honeycomb cores. The accuracy of this lower limit is
quite good for the honeycomb sandwich plates where H/a > 6.

Only the equivalent transverse shear stiffness of honeycomb cores is considered in the
present study. By employing the homogenization theory, the authors presented the ana-
lytical solution for the equivalent in-plane moduli of honeycomb structures (Shi and Tong,
1994a).
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